Selecting SNP for Genomic prediction

Ric Sherlock, M.Keehan, K.Tiplady, T.Johnson, C.Couldrey, M.Littlejohn, S.Davis, B.Harris

Genomic prediction at LIC

- Currently
 - 35K SNP from Illumina Bovine 50k
 - Hybrid Single Step method
- Developing
 - SNP sets
 - Single Step Marker Model (SSMM)

Phenotypes

 Breeding Worth (BW) Traits

 Fat, Protein, Milk volume, Live weight, Fertility

• Type Traits - Udder support

Phenotypes

- Produced phenotypic records for genotyped males and females
 - Males
 (non-genotyped progeny)
 - Females

(original record + weight)

Choosing trait-specific markers

19.5 million whole-genome sequence variants

Identifying marker sets for each trait
 Which markers?

- How many markers?

Marker pre-selection

19.5 million sequence variants

1.6 million subset

Include prior belief of biological significance of markers

Variant class	# Variants	Definition
1	26820	Considerable published evidence of causation
2	39804	Correlated with differences in RNA expression; Predicted by SNPEff to have functional effects and were located in genes we have seen expressed
3	337603	Not captured in Class 2 and were located in regulatory regions or in genes we hadn't seen expressed
4	1144151	Other variants not yet in a class

GWAS

- Method of Analysis
 - BayesRC (MacLeod et. al, 2016)
 - SNPs had unit variances and mean zero
 - Animal Model SNP Markers (mixture distribution) and polygenic random effects
 - Fixed effects overall mean and breed proportions

- Two step approach:
 - Chromosome by chromosome association
 - SNP with a prior probability of 1.5% or greater not being in the zero variance class were selected by trait
 - GWAS of all selected SNP

Number of SNP

						Udder
Iteration	Milk	Fat	Prot	Lwt	Fert	support
0	185051	147100	158619	170166	79363	95429
1	141398	103568	110111	118895	25554	41459

LIC

How many markers to use?

 Can we simply truncate the top N markers?

• What happens to signal captured by truncated markers?

GWAS iterations

Stop once number of markers is less than 1000

Number of SNP

						Udder	
Iteration	Milk	Fat	Prot	Lwt	Fert	support	
0	185051	147100	158619	170166	79363	95429	
1	141398	103568	110111	118895	25554	41459	
2	113119						
3	84839						1
4	56560						
5	28280						
6	14140						e.
7	7070						
8	3535						
9	1767						
10	883						
			341	A R	6 11 .	ÀL	r

0 milk1 (SNP count = 185051)

Effect

4 milk1 (SNP count = 56560)

7 milk1 (SNP count = 7070)

10 milk1 (SNP count = 883)

Chromosome

Effect

Number of SNP

						Udder
Iteration	Milk	Fat	Prot	Lwt	Fert	support
0	185051	147100	158619	170166	79363	95429
1	141398	103568	110111	118895	25554	41459
2	113119	82855	88089	95116	20444	33168
3	84839	62141	66067	71337	15333	24876
4	56560	41428	44045	47558	10222	16584
5	28280	20714	22023	23779	5111	8292
6	14140	10357	11011	11889	2555	4146
7	7070	5178	5505	5944	1277	2073
8	3535	2589	2752	2972	638	1036
9	1767	1294	1376	1486	500	518
10	883	647	688	743		500

Which marker set is best?

Estimated Heritability

Truncation vs Iterated Pruning

Proportion of Top SNP retained (prot1)

Conclusions

- Iterative pruning generated significantly different sets of variants compared to truncation selection.
- Do the SNP sets results in different genomic predictions?

